Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 17(1): 110, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062538

RESUMO

BACKGROUND: In recent years, the mitochondria/immune system interaction has been proposed, so that variants of mitochondrial genome and levels of heteroplasmy might deregulate important metabolic processes in fighting infections, such as leprosy. METHODS: We sequenced the whole mitochondrial genome to investigate variants and heteroplasmy levels, considering patients with different clinical forms of leprosy and household contacts. After sequencing, a specific pipeline was used for preparation and bioinformatics analysis to select heteroplasmic variants. RESULTS: We found 116 variants in at least two of the subtypes of the case group (Borderline Tuberculoid, Borderline Lepromatous, Lepromatous), suggesting a possible clinical significance to these variants. Notably, 15 variants were exclusively found in these three clinical forms, of which five variants stand out for being missense (m.3791T > C in MT-ND1, m.5317C > A in MT-ND2, m.8545G > A in MT-ATP8, m.9044T > C in MT-ATP6 and m.15837T > C in MT-CYB). In addition, we found 26 variants shared only by leprosy poles, of which two are characterized as missense (m.4248T > C in MT-ND1 and m.8027G > A in MT-CO2). CONCLUSION: We found a significant number of variants and heteroplasmy levels in the leprosy patients from our cohort, as well as six genes that may influence leprosy susceptibility, suggesting for the first time that the mitogenome might be involved with the leprosy process, distinction of clinical forms and severity. Thus, future studies are needed to help understand the genetic consequences of these variants.


Assuntos
Genoma Mitocondrial , Hanseníase , Humanos , Heteroplasmia , Genoma Mitocondrial/genética , Hanseníase/genética , Mitocôndrias/genética
2.
Front Genet ; 14: 1295586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116294

RESUMO

Leprosy is an infectious disease primarily caused by the obligate intracellular parasite Mycobacterium leprae. Although it has been considered eradicated in many countries, leprosy continues to be a health issue in developing nations. Besides the social stigma associated with it, individuals affected by leprosy may experience nerve damage leading to physical disabilities if the disease is not properly treated or early diagnosed. Leprosy is recognized as a complex disease wherein socioenvironmental factors, immune response, and host genetics interact to contribute to its development. Recently, a new field of study called epigenetics has emerged, revealing that the immune response and other mechanisms related to infectious diseases can be influenced by noncoding RNAs. This review aims to summarize the significant advancements concerning non-coding RNAs in leprosy, discussing the key perspectives on this novel approach to comprehending the pathophysiology of the disease and identifying molecular markers. In our view, investigations on non-coding RNAs in leprosy hold promise and warrant increased attention from researches in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA